Aye Aye Captain
Alexandre Bonvin
Utrecht University
Published April 29, 2019
First, let’s clear the air about one thing: HADDOCK, a popular tool to model interactions between biomolecules, is not named after a saltwater cod.
“It’s not about the fish,” says Alexandre M. J. J. Bonvin.
Bonvin’s structural bioinformatics group is embedded in the Bijvoet Center and part of the nuclear magnetic resonance (NMR) spectroscopy group at Utrecht University, the Netherlands. Officially, HADDOCK stands for High Ambiguity Driven protein-protein Docking. But the NMR naming tradition demands certain creativity.
The inspiration for HADDOCK comes from a 1940s comic series character by the Belgian cartoonist Hergé. The rum-drinking, profanity-spewing Captain Archibald Haddock was introduced as a foil to the optimistic, positive hero of the story, a journalist named Tintin, according to Wikipedia. Haddock soon evolved to become a strong and noble character. HADDOCK is the group’s flagship software, but among their other offerings is a bioinformatics prediction tool called Whisky, which complements well the Captain, Bonvin says.
HADDOCK’s data-driven approach has its origins in a group meeting given by a desperate graduate student. The student was having difficulty collecting sufficient experimental information to solve the structure of an E2-E3 protein complex involved in ubiquitination, a process best known for marking proteins for cellular recycling.
Listening, Bonvin had an idea. “Let’s try to use this information in a different way,” he remembers suggesting. The student was having a hard time collecting the classical NMR distance information to solve the complex, “but we could monitor the binding, even if we could not solve the structure,” he says. “It appeared NMR was good at monitoring weak and transient interactions. And the binding information—the location on the surface where the partner protein binds—was something we could use.”
They introduced the software in a 2003 paper in the Journal of the American Chemical Society. Since then, Bonvin and his team have added more data types from NMR and broadened HADDOCK to include experimental data from other techniques, including small angle X-ray scattering (SAX) and cryo-electron microscopy and also bioinformatics predictions. Simply put, the program pulls together data from different sources to get the answer to a problem.
“These days, when you start looking at more complex systems, there’s not one experimental technique that gives you all you need,” Bonvin says, “so you need to integrate data from different sources with computations to give you a model.”
To understand how proteins interact—and how that can go wrong in disease—scientists need to know the three-dimensional atomic structures of the complexes they form. Structures are typically solved by experimental methods. But when experiments fall short, a computational method known as docking can help.
“The model itself is never the end of the road,” Bonvin tells his students. “We use models to generate new hypotheses. Then we can go back and test things in the lab and use that information to improve the model.”
Models are more important than ever, as scientists aim to understand larger and more complex systems. The latest version of HADDOCK can model a complex of up to 20 molecules, including proteins, nucleic acids and small molecules.
High quality data also remains important. There are two phases to the modeling process: Generate a lot of models, then select the best model based on certain filters, Bonvin says. When first published, HADDOCK was unique in using data to bias the search in the first phase.
Example applications of HADDOCK are to predict how antibodies bind to their targets and engineer them to bind more precisely or to understand how a point mutation that affects the binding between two proteins. It can be an early step in understanding underlying causes of disease and how to treat them. Pharmaceutical companies use the software to understand biomolecular recognition and design molecules to interfere with this process.
HADDOCK and other tools from the Bonvin group are available through web portals (http://haddock.science.uu.nl/), made more user-friendly with online tutorials. A number of those are also offered as stand alone in the SBGrid software distribution. Several times a year, the sites see a surge in people signing up, a sign that the tools are also being used in classes.
Bonvin himself uses the tools in teaching at the bachelor’s and master’s degree levels. “I can give research projects to students with little experience in computing,” he says. “The next generation of scientists has started using the tools.”
In the lab, Bonvin’s team is trying to model larger and larger systems. To manage the computational burden, that may mean simplifying the model. In fact, “sense and simplicity” might be a good way to describe his philosophy of science.
“Students often think they have to go to the most complex treatment and start at the quantum level,” Bonvin says. “At the end, a simple model should be able to explain things if possible.” And a quantum look at electrons is just not that helpful for modeling large numbers of proteins, he adds.
The group is puzzling over other problems, such as understanding the nature of molecular interactions and what defines their strength, or binding affinity. They are also working on a methodology to tackle complexes involving membrane proteins, the target of about 40 percent of drugs.
Over the years, Bonvin has headed computational user communities that distribute computations on available computers in Europe and around the world. In fact, SBGrid originally was the Bonvin group’s contact point to the U.S. open science grid, although his group doesn’t send jobs to the U.S. anymore for technical reasons. Sustained funding from the European Union supports a large structural biology community and ensures access to high throughput and high performance computing, he says.
The funding also supports professional software development practices, such as code review, continuous integration, and documenting user requests and issues. Funding from a center of excellence for computational biomolecular research, called BioExcel (bioexcel.eu), involving Bonvin’s group and 10 other research institutions in Europe, will support the next upgrade of HADDOCK.
Bonvin was born and raised in Switzerland. He earned a master’s degree in chemistry with a specialization in NMR at the University of Lausanne. He started a PhD in NMR at Utrecht University, but an available project pulled him into computations using NMR data. He learned programming on the fly, he says, “And I liked it.”
During winter and spring holidays in college, Bonvin worked as a ski instructor at Swiss resorts. He’s sampled U.S. slopes, thanks to Keystone Symposia meetings, which famously gave people the afternoons off before lectures resumed in the evening. Now, Keystone afternoons are often filled with workshops and training, infusing outdoor excursions with a tinge of guilt. Plus, the workshops and trainings are key ways to connect with experimental users of the group’s software.
Every spring, U.S. college basketball teams compete for the men’s and women’s championships. In March 2019, Bonvin was helping to manage a different kind of March Madness in Europe and around the world. About three dozen teams, including Bonvin’s group, tested their computer modeling skills in a friendly competition to see who could best predict the three-dimensional structure. The latest contest was an 8-body problem involving a surface-layer protein complex from a deadly microbe.
The competition, called CAPRI, runs whenever a structural biology group makes a target available. Typically, that’s when a paper is in revision and the protein data bank entry is on hold, Bonvin says. Importantly, there should be no published information. The data are treated confidentially by the competitors. Once the paper is published, it is cited by every participant, instantly increasing the metrics for the authors.
Bonvin invites structural biology groups to submit targets for the world’s best modelers to test their models against the most cutting edge science. Information can be found at http://www.capri-docking.org/contribute/.
True to their iconoclast name, in the March 2019 competition, the HADDOCK team took an unconventional step of incorporating a Twitter picture into their data input. That will make a good story when the structure is published—if the social media trick worked.
-Carol Cruzan Morton
Other tales
-
Death Metal
Steven Damo
Published 28 April 2024
Context Matters
Bing Chen
Published 30 January 2024
-
The Crystal Whisperer
Sarah Bowman
Published 29 November 2023
Data in Motion
Nozomi Ando
Published 29 September 2023
-
The Monstrous Maw
André Hoelz
Published 28 June 2023
Second Takes
Andrea Thorn
Published 28 February 2023
-
Radical reactions
Yvain Nicolet
Published 31 January 2023
Floppy Physics
Eva Nogales
Published 30 November 2022
-
Structure of Equity
Jamaine Davis
Published 28 September 2022
Life and Death of a Cell
Evris Gavathiotis
Published 28 July 2022
-
Follow the glow
Kurt Krause
Published 29 April 2022
Resolution solutions
Willy Wriggers
Published 25 February 2022
-
Of enzymes and membranes
Ming Zhou
Published 28 October 2021
Step-by-step
Gabrielle Rudenko
Published 26 September 2021
-
Moving muscle
Montserrat Samso
Published 26 July 2021
Particle catcher
Stefan Raunser
Published 28 June 2021
-
Designer drugs
Ho Leung Ng
Published 25 February 2021
Right place, right time
Ernesto Fuentes
Published 29 January 2021
-
Shape-shifting secrets of membranes
James Hurley
Published 27 November 2020
Enzymatic action
Cynthia Wolberger
Published 28 September 2020
-
Rules of motion
Priyamvada Acharya
Published 31 July 2020
Cosmic Squared
Michael Cianfrocco
Published 27 June 2020
-
Kaps are Cool
Yuh Min Chook
Published 28 April 2020
Spiraling into focus
Carsten Sachse
Published 29 March 2020
-
Seeing cilia
Alan Brown
Published 27 February 2020
For the Love of EM
Guy Schoehn
Published 27 January 2020
-
Protein Puddles
Michael Rosen
Published 16 December 2019
Changing channels
Daniel Minor Jr.
Published 27 September 2019
-
Listening Tips
Marcos Sotomayor
Published 30 July 2019
Beyond Cool
Published 31 May 2019
-
Hao Wu
A Higher Order
Published 30 May 2019
Aye Aye Captain
Alexandre Bonvin
Published 29 April 2019
-
The PARP Family Family
John Pascal
Published 28 February 2019
Frame by frame
Nikolaus Grigorieff
Published 28 January 2019
-
Predicting Success
Bil Clemons
Published 18 December 2018
Curiouser and Curiouser
Ramaswamy Subramanian
Published 27 November 2018
-
Rely on This
Sjors Scheres
Published 26 October 2018
Proteins out of bounds
Gerhard Wagner
Published 27 September 2018
-
Hiding in plain sight
Gaya Amarasinghe
Published 27 July 2018
Jumping Genes
Orsolya Barabas
Published 27 June 2018
-
Data Whisperer
Karolin Luger
Published 30 May 2018
Flipping the Switch
Jacqueline Cherfils
Published 27 April 2018
-
Tooling Around
Andrew Kruse
Published 29 March 2018
Comings and Goings
Tom Rapoport, Ph.D.
Published 23 February 2018
-
Transcriptional Rhythm
Seth Darst
Published 27 January 2018
The Language of Gene Regulation
Daniel Panne
Published 21 November 2017
-
Not Your Average Protein
James Fraser
Published 23 October 2017
Message Received
Sebastien Granier
Published 24 August 2017
-
Resistance is Futile
Celia Schiffer
Published 28 July 2017
Twist of Fate
Leemor Joshua-Tor
Published 28 June 2017
-
Drug Designer
John Buolamwini
Published 30 May 2017
Mathematically Minded
James Holton
Published 28 April 2017
-
Garbage Out
Kay Diederichs
Published 30 March 2017
Fixer Upper
Brandt Eichman
Published 27 February 2017
-
Mobilizers
Phoebe Rice
Published 31 January 2017
Escape Artist
Katya Heldwein
Published 19 December 2016
-
Nature’s Confectioner
Jochen Zimmer
Published 29 November 2016
State of Fusion
Jason McLellan
Published 27 October 2016
-
Here Be Dragons
Brian Fox
Published 28 September 2016
SBGrid Assumes Ownership of PyMOLWiki
Published 15 September 2016
-
Pharm Team
Oleg Tsodikov
Published 24 August 2016
Spiro-Gyra
Alejandro Buschiazzo
Published 27 July 2016
-
Turning the DIALS
Nicholas Sauter
Published 29 June 2016
Pipeline Dreams
Bridget Carragher and Clint Potter
Published 26 April 2016
-
U-Store-It
The SBGrid Data Bank provides an affordable and sustainable way to preserve and share structural biology data
Published 28 March 2016
Big Questions, Big Answers
Jennifer Doudna
Published 22 February 2016
-
Not a Structural Biologist
Enrico Di Cera
Published 17 December 2015
Divide and Conquer
Kevin Corbett
Published 19 November 2015
-
Computing Cellular Clockworks
Klaus Schulten
Published 23 October 2015
Trans-Plant
Gang Dong
Published 26 September 2015
-
Keep on Moving
James Berger
Published 23 August 2015
Totally Tubular
Antonina Roll-Mecak
Published 27 July 2015
-
From Disorder, Function
Julie Forman-Kay
Published 29 June 2015
Into Alignment
Geoff Barton
Published 27 May 2015
-
Two Labs, Many Methods
Michael Sattler
Published 28 April 2015
Picture This
Georgios Skiniotis
Published 20 March 2015
-
Intron Intrigue
Navtej Toor
Published 20 February 2015
Cut and Paste
Martin Jinek
Published 28 January 2015
-
Basics and Beyond
Qing Fan
Published 18 December 2014
Bloodletting and Other Studies
Pedro José Barbosa Pereira
Published 25 November 2014
-
Wire Models, Wired
A brief history of UCSF Chimera
Published 29 October 2014
In Search of…New Drugs
Doug Daniels
Published 30 September 2014
-
Ilyas Hamdi
Published 30 September 2014
An Affinity for Affinity…and Corals
John C. Williams
Published 29 August 2014
-
Pete Meyer, Ph.D.
Research Computing Specialist
Published 22 August 2014
Justin O'Connor
Sr. System Administrator
Published 20 August 2014
-
Carol Herre
Software Release Engineer
Published 15 August 2014
Elizabeth Dougherty
Science Writer
Published 13 August 2014
-
Andrew Morin, Ph.D.
Policy Research Fellow
Published 11 August 2014
Jason Key, Ph.D.
Associate Director of Technology and Innovation
Published 8 August 2014
-
Piotr Sliz, Ph.D.
Principal Investigator, SBGrid
Published 1 August 2014
New Kid on the Block
James Chen
Published 29 July 2014
-
Membrane Master
Tamir Gonen
Published 30 June 2014
The Natural Bridge
Piotr Sliz
Published 13 June 2014
-
Surprise, Surprise
Catherine Drennan
Published 26 April 2014
Gone Viral
Olve Peersen
Published 20 March 2014
-
All Who Wander Are Not Lost
Frank Delaglio
Published 24 February 2014
The Raw and the Cooked
Graeme Winter
Published 24 January 2014
-
Vacc-elerator
Peter Kwong
Published 17 December 2013
Structural Storyteller
Karin Reinisch
Published 15 November 2013
-
The Fixer
Jane Richardson
Published 28 October 2013
Inside the Box
Mishtu Dey
Published 17 September 2013
-
Sensing a Change
Brian Crane
Published 16 August 2013
Towards Personalized Oncology
Mark Lemmon
Published 16 July 2013
-
Brush with Fame
Yizhi Jane Tao
Published 14 June 2013
Toxic Avenger
Borden Lacy
Published 21 May 2013
-
Pushing the Boundaries
Stephen Harrison
Published 22 April 2013
Strength in Numbers
Joseph Ho
Published 18 March 2013
-
One Lab, Many Methods
Wesley Sundquist
Published 12 February 2013
Unplanned Pioneer
Tim Stevens
Published 15 January 2013
-
From Actin to Action
Emil Pai
Published 11 January 2013
Unstructured
A Brief History of CCP4
Published 12 December 2012
-
Stop, Collaborate and Listen
Eleanor Dodson
Published 5 November 2012
X-PLORer
Axel Brunger
Published 1 October 2012
-
Share the Wealth
Zbyszek Otwinowski
Published 22 August 2012
Unraveling RNA
Anna Pyle
Published 18 July 2012
-
Sharper Image
Pawel Penczek and SPARX
Published 4 June 2012
Creative Copy Cat
Pamela Bjorkman
Published 25 April 2012
-
Charm and Diplomacy
Gerard Kleywegt
Published 7 March 2012
From Curiosity to Cure
Marc Kvansakul
Published 13 December 2011
-
The Lure of the Sandbox
Paul Emsley and Coot
Published 15 October 2011
Springsteen, Tolkien, Protein
Alwyn Jones and Frodo
Published 17 June 2011
-
Structures Solved Simply
Paul Adams and Tom Terwilliger on Phenix
Published 2 June 2011
Escape from the Darkroom
Wolfgang Kabsch and XDS
Published 19 May 2011
-
Playing the Odds
Randy Read and Phaser
Published 19 May 2011
Crystallography for Kids
Lynne Howell
Published 17 May 2011
-
Better, Faster, Stronger, More
Victor Lamzin and ARP/wARP
Published 17 May 2011
Side-Track to Success
Ning Zheng
Published 13 May 2011