Installing SBGrid Software
Using the SBGrid Environment
Support for Site Administrators
Hardware Support Notes
Getting Help
Support for Developers
Boltz-1 is a diffusion-based deep learning model for predicting 3D structures of biomolecular complexes. It can be run on both CPU and GPU systems.
Boltz-1 can be run with minimal parameters as shown in the examples below.
mkdir -p test_data
# Create a minimal MSA file
cat > test_data/test.a3m << EOF
>101
MVKG
>UniRef100_test
MVKG
EOF
# Create a simple test FASTA with MSA reference
cat > test_data/simple_test.fasta << EOF
>A|protein|./test_data/test.a3m
MVKG
EOF
# Test with minimal parameters and CPU
boltz predict test_data/simple_test.fasta \
--accelerator cpu \
--sampling_steps 25 \
--recycling_steps 1 \
--diffusion_samples 1 \
--cache ./boltz_cache
Note: This test requires a CUDA-capable GPU. If no GPU is available, use the CPU version instead.
# Test with minimal parameters and GPU
boltz predict test_data/simple_test.fasta \
--accelerator gpu \
--sampling_steps 25 \
--recycling_steps 1 \
--diffusion_samples 1 \
--cache ./boltz_cache
Example with existing data (change path/to/your_protein.fasta
to your data):
# Run prediction on your existing FASTA file
boltz predict path/to/your_protein.fasta \
--accelerator gpu \
--sampling_steps 25 \
--recycling_steps 1 \
--diffusion_samples 1 \
--cache ./boltz_cache