
Jason Key PhD & Peter Meyer PhD

BCMP Harvard Medical School

SBGrid Consortium

key@hkl.hms.harvard.edu
meyer@hkl.hms.harvard.edu

SBGrid RELION Workshop 2017

Software installation
Intro to Computing on Linux

mailto:key@hkl.hms.harvard.edu
mailto:meyer@hkl.hms.harvard.edu
mailto:meyer@hkl.hms.harvard.edu

Welcome!
SBGrid : Structural Biology Research Computing

Who we are:

Non-profit Consortium based in
BCMP @HMS focused on Structural
Biology computing

Structural Biologists, IT pros,
software engineers, programmers,
software policy advocates,
postdocs, students

Pete
Meyer

Mick
Timony

Justin
O’Connor

Piotr
Sliz

Michelle
Ottaviano

Carol Herre
Rob DiCamillo

Saythyda
 Corrado

Dimitry
Filonov

James
Vincent

Welcome!
SBGrid : Structural Biology Research Computing

SBGrid RELION Workshop 2017

Software Installation

Intro to Linux Computing

SBGrid RELION Workshop 2017

We will be using Amazon EC2.
You may want to install RELION and
associated applications:

● RELION

 gctf ctf motioncorr motioncor2 unblur summovie

● Chimera

SBGrid RELION Workshop 2017

https://sbgrid.org/wiki/client_install

SBGrid RELION Workshop 2017

Intro to Linux Computing

● Introduction to Linux
Why Linux?

● The Linux interface
(Understanding the Shell, scripting)

● Scientific Computing on linux -
 Tips and tools for computing and research

Linux

Linux is an open-source operating
systems modeled on UNIX developed
by Linux Torvalds in 1991.

Comp.os.minix

Hello everybody out there using minix - I'm
doing a (free) operating system (just a
hobby, won't be big and professional like
gnu) for 386(486) AT clones. …

Linux

The GNU (Gnu’s Not Unix) was an effort
to develop free and open source OS and
applications.

Torvalds developed ‘kernel’ and
combined it with software from Richard
Stallman @ MIT. GNU’s Not Unix

Linux

Multi-user, multi-tasking

 Many users on the same machine
at once, running many programs

Multi-platform

 runs on many different
processor types

Linux

Multi-user, multi-tasking

 Many users on the same machine
at once, running many programs

Multi-platform

 runs on many different
processor types

Linux is a Unix-like
system free of
proprietary software
for which source code
is available and
freely distributed

Linux

Multi-user, multi-tasking

 Many users on the same machine
at once, running many programs

Multi-platform

 runs on many different
processor types

Linux is a Unix-like
system free of
proprietary software
for which source code
is available and
freely distributed

Linux

But why did Linux succeed?
 (and not HURD, BSD, Minux, etc …)

● Decentralized Development

● Pragmatic (Not an academic or ideological exercise)

● Technological Superiority

● Luck?

Linux
The Filesystem Hierarchy Standard (FHS) defines the
directory structure and directory contents.

"Everything is a file"

Defining features of *nix

Resources (documents,
directories, keyboards,
printers, storage, network
communications, etc)

Are simple streams of
bytes exposed through the
filesystem name space

Hardware and Workflows

The Shell

The ‘shell’ is the Command Line Interface
for Linux

This is an program that interprets what you type, keeps track of programs on
the system, etc.

Common Shells:

tcsh : exTended C SHell
bash : Bourne Again SHell
ksh : Korn SHell
csh : C SHell (early popular shell)
sh : the original shell, often a synonym for bash now

The Shell : Commands

http://linuxcommand.org/lc3_learning_the_shell.php

Import / include (source)

Navigation (cd, pwd, ls)

Manipulating Files (cp, rm, mv, mkdir)

Search (grep, find)

Permissions (chmod, chown, chgrp)

Job Control (jobs, ps, fg, bg, nohup)

The Shell : The Environment

The shell environment is configured globally per user
in files and startup scripts

● Settings for variables
● Function definitions
● Aliases

Except for the reserved Shell special parameters
variable names can be set by the user

Quotes remove special meaning from one or multiple
characters

The Shell : The Environment

The ‘printenv’ command

The Shell : The Environment

The ‘printenv’ command

Shell variables:

PATH
Where executables can be found

HOME
User’s home directory

USER
User’s username

SHELL
Default shell setting

The Shell : The Environment

The ‘printenv’ command

Shell variables:

PS1
Shell prompt settings

LD_LIBRARY_PATH
 Primary search path for library directories
...

The Shell : The Environment

The ‘alias’ command

An alias is a shortcut or abbreviation.

Great for avoiding typing a long command sequences

Aliases do NOT get passed to scripts (sub-shells)

The Shell : The Environment

Functions: The ‘declare -f’ command

Functions are subroutines :
a code block (list of commands) that implements a set
of operations.

The Shell : stdout stdin stderr

stdin :
Input for commands
usually come from the keyboard

stdout :
Output from commands
written to the screen

stderr :
Error messages from processes
usually written to the screen

The Shell : stdout stdin stderr

Pipe (|):
stdout of one command to stdin of another command

Output Redirection (>):
stdout of a command to a file

Output Appending (>>):
stdout of a command appending to a file

Input Redirection (<):
stdin of a command from a file

Use “-” to read this from standard input

The Shell : stdout stdin stderr

Stderr redirection

For tcsh
&> filename

For bash
2>&1 filename

The Shell : stdout stdin stderr

Most Linux (*nix) commands can be strung together

Example:
How many image files do I have?

ls -l *img | wc

How many image files do I have that are not have
‘native’ in the name?

ls -l *img | grep -v “native” | wc

The Shell : stdout stdin stderr

Most Linux (*nix) commands can be strung together

Example:
A list of all my image files :

ls *img > my_images.txt

A list of all my images sorted in reverse numerical
order?

ls -l *img | sort -rn -k 9 > sorted_files.txt

Shell scripts are text files of variables,
functions, and commands

The Shell script

A ‘shebang’ (#!/bin/bash, …) is required to
indicate which interpreter the OS programs loader
should use

Conditional expressions: if/else, case
Loops: for, while, until

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

Scripting and Scientific Computing

Why wouldn’t you want to script data processing?

- Dealing with intrinsically visual data (density
interpretation, particle picking, etc)

- Using programs that are GUI only

Scripting and Scientific Computing

Why would you want to script data processing?

- Documenting how a dataset was processed, and why
particular options were used

- Easier to process several datasets identically (e.g. -
comparing apo structure and complex structure)

- Easier to explore alternative ways to process (e.g. -
MR/density fitting for 50 models

Scripting and Scientific Computing

#!/bin/bash

process_my_data input*.mrc output.mrc

Scripting and Scientific Computing

#!/usr/bin/env bash

first stage of my data processing

process_my_data input*.mrc output.mrc > processing.log

Scripting and Scientific Computing

#!/usr/bin/env bash

first stage of my data processing

job=ProcessingStage01

inp="input*.mrc"

opf="${job}-output.mrc"

process_my_data $inp $opf > ${job}.log

Scripting and Scientific Computing

#!/usr/bin/env bash
first stage of my data processing
#tuning parameter
tune_param="0.2"
pipeline flag
flag="EvalReconstruct"
job=ProcessingStage01
inp="input*.mrc"
opf="${job}-output.mrc"
process_my_data --input $inp --output $opf --tune $tune_param << eof > ${job}.log
PIPELINE_FLAG $flag
eof

Scripting and Scientific Computing

#!/usr/bin/env bash

job=TestScan

input_dir="models/"
output_dir="results/"
map=input.mrc

for model in `ls $input_dir/*.pdb | awk -F. '{print $1}'`
do

search_density_for_model --map $map --search_model ${input_dir}/${model}.pdb --output
${output_dir}/${model}_results.out
done

Scientific Computing: tools, tips and tricks

● Getting there and moving data

● What resources does this computer have
(and what is it doing)?

● Reproducibility and collaboration

Scientific Computing: tools, tips and tricks

SSH

provides a secure channel (encrypted) over an
unsecured network in a client-server
architecture

● remote command-line login
● remote command execution

● any network service can be secured with SSH.

Scientific Computing: SSH

SSH public-key authentication allows login and command execution without
passwords based on a public/private key pair

Setup: create keys, set a password

ssh-keygen -t rsa

Public key goes on the remote server in your .ssh directory in the
file $HOME/.ssh/authorized_keys

Private key stays in $HOME/.ssh

Ssh-agent manages keys - typically running by default on most Linuxes

Use ssh-add command to add key, No more passwords!

Scientific Computing: SSH

SSH public-key authentication allows login and command execution without
passwords based on a public/private key pair

 Use ssh -X to forward X11 for graphics access

 Execute code remotely with a single command

Scientific Computing: Moving data with rsync

rsync

● Transfers only changes in a file tree
● Local and remote synchronization of data file and directories

rsync -rv /my/files/here/ /my/files/over_there/

● Can be run over ssh for secure transfer

rsync -rv /my/files/here/ remote.server.org:/my/files/over_there/

● Ideal for data backup

man rsync

For more info

Scientific Computing: Hardware

CPU, Storage,memory,usb and pci

● CPU : cpuinfo or cat /proc/cpu
● DISK : df or lsblk
● MEMORY : free
● USB : lsusb
● PCI (internal cards, etc) : lspci

Scientific Computing: What is running

CPU and memory use, jobs, IO

● top, uptime
● ps
● sar

Scientific Computing: history

history

The shell records all commands.
This record can be accessed with the ‘history’ command.

Some relevant variables:
HISTSIZE

Define number of commands

HISTFILE
Define file

HISTCONTROL=ignoredups
Ignore duplicates

Scientific Computing: Terminal multiplexer

Tmux (or screen)

A terminal multiplexer is terminal-based program that
gives the user

● Ability to detach and reattach sessions from a terminal
○ Sessions persist on the remote machine
○ A terminal session can be accessed from multiple machines
○ Persist through network disconnection

● Multiple separate login sessions inside a single terminal window

Scientific Computing: Version Control

VCS

Version control systems are designed for
software development, are are great for
scientific computing projects

Version control software keeps track of every
modification to the code

Earlier versions of code are retained and can
be accessed

Scientific Computing: Getting started with git

More GIT
Gitlab, github bitbucket, RELION is in GIT

https://git-scm.com/book/en/v1/Getting-Started

Scientific Computing: Install Client CLI

Scientific Computing: Install client GUI

