Quo Vadis Workshop 2016

Software installation Intro to Computing on Linux

Jason Key PhD BCMP Harvard Medical School Lead, SBGrid Consortium

key@hkl.hms.harvard.edu

Welcome! Quo Vadis Workshop 2016

Pete Meyer

Ilyas Hamdi

Mick Timony

Andrew Morin

Justin 0'
Connor

Michelle Ottaviano

Saythyda Corrado

Piotr Sliz

SBGrid: Structural Biology Research Computing

Who we are:

Non-profit Consortium based in BCMP @HMS focused on Structural Biology computing

Structural Biologists, IT pros, software engineers, programmers, software policy advocates, postdocs, students

Quo Vadis Workshop 2016 - 22 May 2016

Software Installation for QV2016

Intro to Linux Computing

Quo Vadis Workshop 2016

```
CCP4: (COOT, iMosflm, ...)
DIALS:
XDS: (XDSGUI, XDSSTAT, XDSViewer)
```


Software for QV2016

https://sbgrid.org/wiki/sbgrid-qv2016-installation

1) Download the script :

```
curl -o sbgrid-qv2016 https://sbgrid.org/wiki/sbgrid-qv2016
```

2) Make executable and execute :

```
chmod +x sbgrid-qv2016
./sbgrid-qv2016
```

3) Load the environment :

```
source /programs/sbgrid.shrc (sbgrid.cshrc in tcsh)
```


Software for QV2016

Installing updates:

./\$HOME/programs/share/bin/sbgrid-qv2016

Datasets for QV2016

Datasets can be downloaded via rsync

```
rsync -av rsync://data.sbgrid.org/10.15785/SBGRID/$id
```

(where \$id is replaced by the dataset ID).

Quo Vadis Workshop 2016 - 22May16

Intro to Linux Computing

• Introduction to Linux Why Linux?

- The Linux interface (Understanding the Shell)
- Scientific Computing on linux Sysadmin's tips and tools for computing and research

Linux is an open-source operating systems modeled on UNIX developed by Linux Torvalds in 1991.

Comp.os.minix

Hello everybody out there using minix - I'm doing a (free) operating system (just a hobby, won't be big and professional like gnu) for 386(486) AT clones. ...

The GNU (Gnu's Not Unix) was an effort to develop free and open source OS and applications.

Torvalds developed 'kernel' and combined it with software from Richard Stallman @ MIT.

GNU's Not Unix

Multi-user, multi-tasking

Many users on the same machine at once, running many programs

Multi-platform

runs on many different processor types

Multi-user, multi-tasking

Many users on the same machine at once, running many programs

Multi-platform

runs on many different processor types

Linux is a Unix-like system free of proprietary software for which source code is available and freely distributed

Multi-user, multi-tasking

Many users on the same machine at once, running many programs

Multi-platform

runs on many different processor types

Linux is a Unix-like system free of proprietary software for which source code is available and freely distributed

Linux

```
But why did Linux succeed?

( and not HURD, BSD, Minux, etc ...)
```

- Decentralized Development
- Pragmatic (Not an academic or ideological exercise)
- Technological Superiority
- Luck?

The Filesystem Hierarchy Standard (FHS) defines the directory structure and directory contents.

"Everything is a file"

Defining features of *nix

Resources (documents, directories, keyboards, printers, storage, network communications, etc)

Are simple streams of bytes exposed through the filesystem name space

The Shell

The 'shell' is the Command Line Interface for Linux

This is an program that interprets what you type, keeps track of programs on the system, etc.

Common Shells:

tcsh : exTended C SHell
bash : Bourne Again SHell

ksh : Korn SHell

csh : C SHell (early popular shell)

sh : the original shell, often a synonym for bash now

The Shell: Commands

```
Navigation (cd, pwd, ls)
Manipulating Files (cp, rm, mv, mkdir)
Search (grep, find)
Permissions (chmod, chown, chgrp)
Job Control (jobs, ps, fg, bg, nohup)
http://linuxcommand.org/lc3 learning the shell.php
```


The shell environment is configured globally per user in files and startup scripts

- Settings for variables
- Function definitions
- Aliases

Except for the reserved Shell special parameters variable names can be set by the user

Quotes remove special meaning from one or multiple characters

The 'printenv' command


```
The 'printenv' command
Shell variables:
    PATH
       Where executables can be found
    HOME
       User's home directory
    USER
       User's username
    SHELL
       Default shell setting
```



```
The 'printenv' command
Shell variables:
   PS1
       Shell prompt settings
   LD LIBRARY PATH
       Primary search path for library directories
```


The 'alias' command

An alias is a shortcut or abbreviation.

Great for avoiding typing a long command sequences

Aliases do NOT get passed to scripts (sub-shells)

Functions: The 'declare -f' command

Functions are subroutines: a code block (list of commands) that implements a set of operations.


```
stdout:
   Output from commands
   written to the screen
stdin:
   Input for commands
   usually come from the keyboard
stdin:
   Error messages from processes
   usually written to the screen
```



```
Pipe (|):
   stdout of one command to stdin of another command
Output Redirection (>):
   stdout of a command to a file
Output Appending (>>):
   stdout of a command appending to a file
Input Redirection (<):</pre>
   stdin of a command from a file
   Use "-" to read this from standard input
```

Stderr redirection

For tcsh &> filename

For bash 2>&1 filename

Most Linux (*nix) commands can be strung together

Example:

How many image files do I have?

```
ls -l *img | wc
```

How many image files do I have that are not have 'native' in the name?

```
ls -l *img | grep -v "native" | wc
```


Most Linux (*nix) commands can be strung together

Example:

A list of all my image files :

```
ls *img > my_images.txt
```

A list of all my images sorted in reverse numerical order?

```
ls -l *img | sort -rn -k 9 > sorted_files.txt
```


The Shell script

Shell scripts are text files of variables, functions, and commands

A 'shebang' (#!/bin/bash, ...) is required to indicate which interpreter the OS programs loader should use

Conditional expressions: if/else, case Loops: for, while, until

Scientific Computing: tools, tips and tricks

- Getting there and moving data
- What resources does this computer have (and what is it doing)?
- Reproducibility and collaboration

Scientific Computing: tools, tips and tricks

SSH

provides a secure channel (encrypted) over an unsecured network in a client-server architecture

- remote command-line login
- remote command execution
- any network service can be secured with SSH.

Scientific Computing: SSH

SSH public-key authentication allows login and command execution without passwords based on a public/private key pair

Setup: create keys, set a password

ssh-keygen -t rsa

Public key goes on the remote server in your .ssh directory in the file \$HOME/.ssh/authorized_keys

Private key stays in \$HOME/.ssh

Ssh-agent manages keys - typically running by default on most Linuxes

Use ssh-add command to add key, No more passwords!

Scientific Computing: SSH

SSH public-key authentication allows login and command execution without passwords based on a public/private key pair

Use ssh -X to forward X11 for graphics access

Scientific Computing: Moving data with rsync

rsync

- Transfers only changes in a file tree
- Local and remote synchronization of data file and directories

```
rsync -rv /my/files/here/ /my/files/over_there/
```

Can be run over ssh for secure transfer

```
rsync -rv /my/files/here/ remote.server.org:/my/files/over_there/
```

Ideal for data backup

```
man rsync
```

For more info

Scientific Computing: Hardware

CPU, Storage, memory, usb and pci

- cpuinfo or cat /prog/cpu
- df or lsblk
- free
- lsusb
- lspci

Scientific Computing: What is running

CPU and memory use, jobs, IO

- top, uptime
- ps
- sar

Scientific Computing: history

history

```
The shell records all commands.
This record can be accessed with the 'history' command.
Some relevant variables:
    HTSTST7F
         Define number of commands
    HISTFILE
         Define file
    HISTCONTROL=ignoredups
```

Ignore duplicates

Scientific Computing: Terminal multiplexer

Tmux (or screen)

A terminal multiplexer is terminal-based program that gives the user

- Ability to detach and reattach sessions from a terminal
 - Sessions persist on the remote machine
 - A terminal session can be accessed from multiple machines
 - Persist through network disconnection
- Multiple separate login sessions inside a single terminal window

Scientific Computing: Version Control

VCS

Version control systems are designed for software development, are are great for scientific computing projects

Version control software keeps track of every modification to the code

Earlier versions of code are retained and can be accessed

Scientific Computing: Version Control

Git / hg / svn

Preserves the modification history of scripts and configuration files 'stream of snapshots'

Allows branching for new projects, ideas and experimentation

Designed for collaboration (labs)

Github, bitbucket, etc.

Scientific Computing: Getting started with git

https://git-scm.com/book/en/v1/Getting-Started

